FLGuard : Byzantine-robust Federated Learning via Contrastive Models

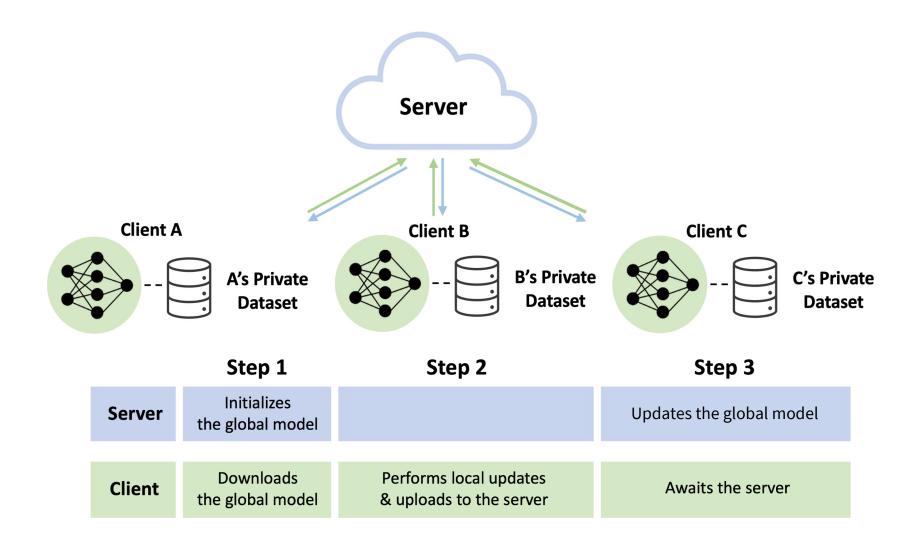
Younghan Lee¹, Yungi Cho¹, Woorim Han¹, Ho Bae² and Yunheung Paek¹

¹Seoul National University ²Ewha Woman's University

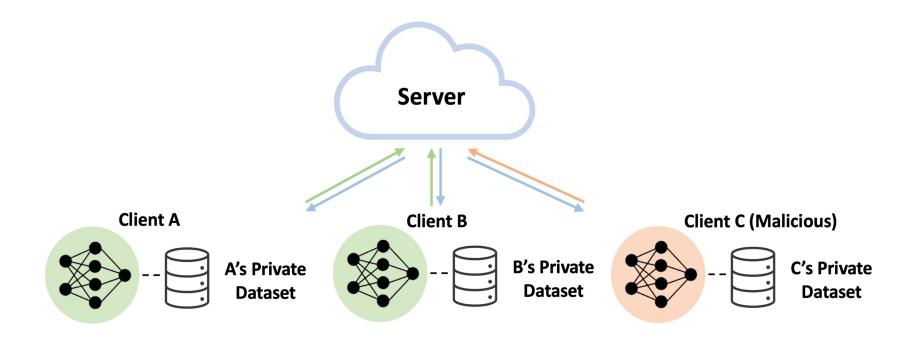
Table of Contents

- Federated Learning
 - How it works
 - Poisoning attacks
- Byzantine-robust Federated Learning
- Our Method
 - Preprocessing, Training, Filtering
- Experiments
- Conclusion

FL – How it works



FL – **Poisoning attacks**



- Malicious clients attempts to degrade the performance of AI model
 - Model poisoning attack & Data poisoning attack
- Threat to integrity and availability of AI model

FL – **Poisoning** attacks

Type	Adversaries' Capability	Adversaries' Knowledge Local Updates of Server's AGR						
	Capability	Benign Clients	Algorithm					
Type-1 (T1)	Model Poisoning	\checkmark	\checkmark					
Type-2 (T2)	Model Poisoning	×	\checkmark					
Type-3 (T3)	Model Poisoning	\checkmark	×					
Type-4 (T4)	Model Poisoning	×	×					
Type-5 $(T5)$	Data Poisoning	×	×					

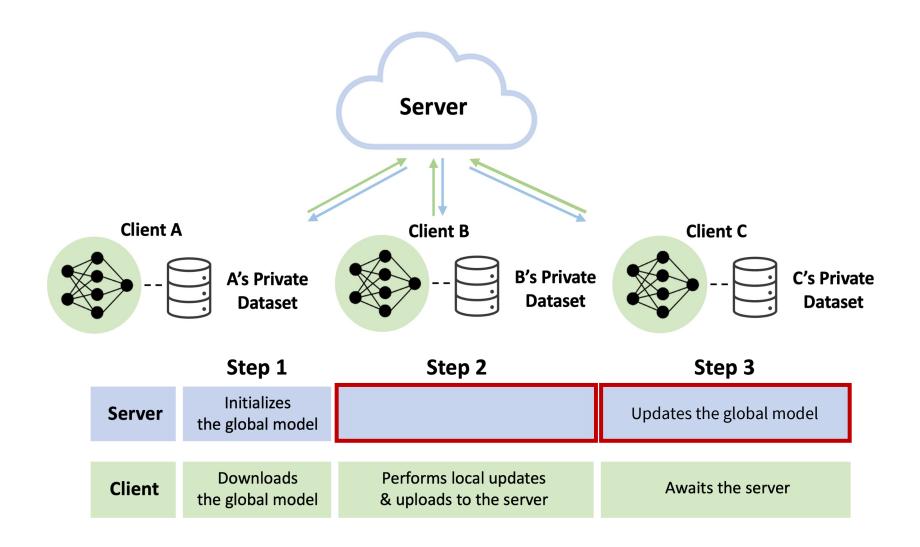
- Adversaries' objective is indiscriminate
 - aims to misclassify any data samples
- Type-1 represents the strongest adversaries

Byzantine-robust FL

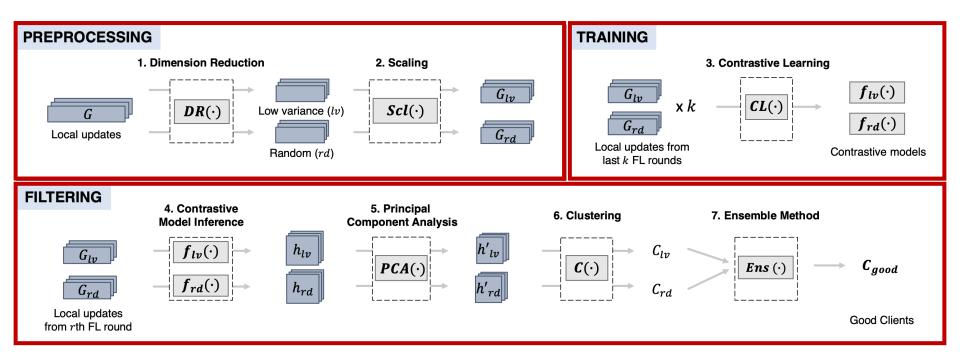
- Preserve the performance of AI model
 - Fidelity Not sacrifice accuracy when no adversaries are present
 - Robustness Persist the accuracy when adversaries are present
 - Efficiency Not cause an overhead that will delay the training

- Current Limitation
 - Requires additional information about FL
 - Number of malicious clients present in FL (statistical info)
 - Auxiliary dataset
 - Not effective under non-IID settings

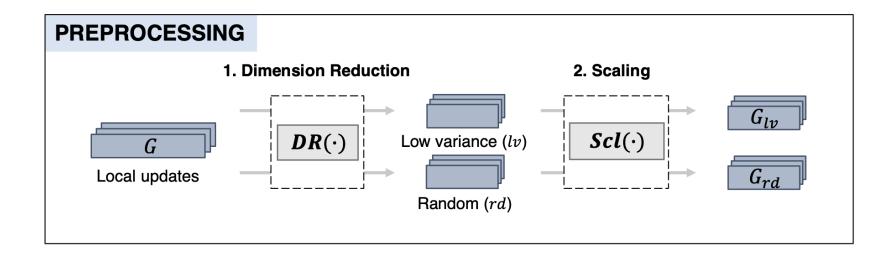
Our Method - Overview



Our Method – In details

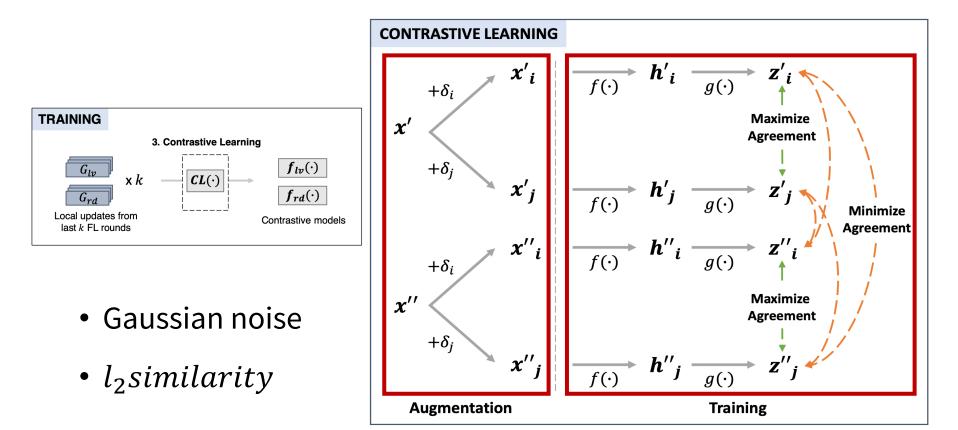


Our Method – Preprocessing



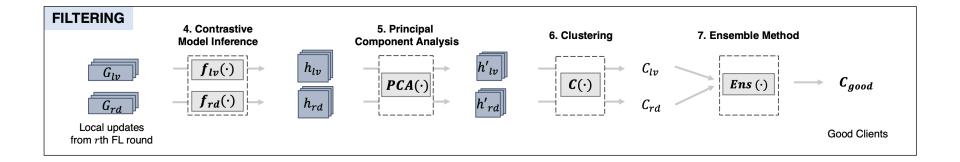
- Two different dimension reduction techniques
 - Different attacks requires different techniques to defend
- MaxAbs scaler to keep the sign of original local updates
 - Improves the accuracy by 20% compared to MinMax scaler

Our Method – Contrastive Learning



$$l(z_{i,j}) = -\log \frac{\exp(sim(z_{i,j})/\tau)}{\sum_{k=1}^{2B} \mathbb{1}_{[k \neq i]} \exp(sim(z_{i,k})/\tau)}$$

Our Method – Filtering



- Projects the local updates to representation: h_{lv} and h_{rd}
- PCA to reduce the dimension down for clustering
- Agglomerative hierarchical clustering to form two clusters
- We consider bigger cluster as the benign and ensemble: $C_{lv} \cap C_{rd}$

Experiments – Setup

	Details	MNIST	CIFAR-10	FEMNIST		
R	$\# \operatorname{FL} \operatorname{Rounds}$	300	2,000	1,500		
N	# Total Clients	100	50	$3,\!400$		
M	# Malicious Clients	20	10	680		
P	# Participating Clients		\overline{N}	60		
b	Batch Size	250	32	250		
η	Global Learning Rate	0.001	0.01	0.001		
Opt	Optimizer	Adam	SGD	Adam		
Arch	Global Model Architecture	FCN	ResNet-14	ConvNet		

Experiments – Poisoning attacks

- Goal is to create malicious local updates
- $g_m = g_b + \gamma p$, where $p = perturbation \ vector$
- Inverse unit vector = $-\binom{g_b}{||g_b||_2}$, Inverse sign = $-\operatorname{sgn}(f_{avg}(g_b))$
- Finding an optimal γ is the main challenge
- Threat model Type 1 & 2
 - Static optimization approach (USENIX Security 20)
 - Dynamic optimization approach (NDSS 21)
- Threat model Type 3 & 4
 - Little Is Enough (NIPS 19)
 - Min-Sum and Min-Max (NDSS 21)
 - Sign Flip (NIPS 19)
- Threat model Type 5
 - Static Label Flip (NDSS 21)
 - Dynamic Label Flip (S&P 22)

Experiments – Fidelity

Dataset (Distr.)	AGR	No Attack
	TrMean (ICML'18)	96.98
	MKrum (NIPS'17)	96.37
	Bulyan (ICML'18)	95.92
MNIST-0.1 (IID)	DnC (NDSS'21)	97.06
	FLTrust (NDSS'21)	95.96
	SignGuard (ICDCS'22)	97.20
	FLGuard (Ours)	97.24
	TrMean (ICML'18)	71.92
	MKrum (NIPS'17)	71.41
	Bulyan (ICML'18)	56.62
CIFAR10	DnC (NDSS'21)	72.44
(IID)	FLTrust (NDSS'21)	70.74
	SignGuard (ICDCS'22)	70.64
	FLGuard (Ours)	72.73

Dataset (Distr.)	AGR	No Attack
	TrMean (ICML'18)	95.96
	MKrum (NIPS'17)	96.19
	Bulyan (ICML'18)	94.38
MNIST-0.5	DnC (NDSS'21)	96.57
(Non-IID)	FLTrust (NDSS'21)	95.47
	SignGuard (ICDCS'22)	96.94
	FLGuard (Ours)	96.79
	TrMean (ICML'18)	80.62
	MKrum (NIPS'17)	83.69
	Bulyan (ICML'18)	69.89
FEMNIST	DnC (NDSS'21)	83.87
(Non-IID)	FLTrust (NDSS'21)	81.83
	SignGuard (ICDCS'22)	83.56
	FLGuard (Ours)	84.74

- FedAvg without attacks (baseline)
- MNIST-0.1:97.24%, CIFAR-10:73.54%, MNIST-0.5:97.16%, FEMNIST:84.11%

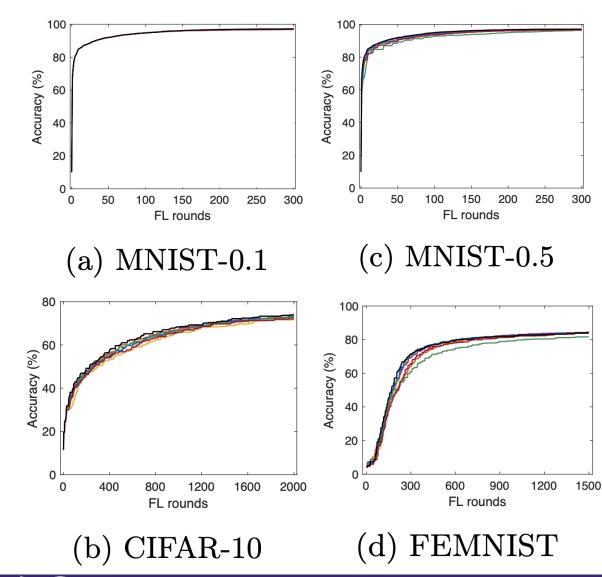
Experiments – Robustness

Dataset		-	Typ	pe-1		Type-2							
	AGR	STAT-OPT		DYN-OPT		Adaptive		STAT-OPT		DYN-OPT		Adaptive	
(Distr.)		Krum	ТМ	Krum	ТМ	DnC	FLG	Krum	ТМ	Krum	ТМ	DnC	FLG
	TrMean (ICML'18)	58.16	46.53	63.82	52.11	69.32	71.83	58.73	44.48	58.89	53.33	59.88	71.39
	MKrum (NIPS'17)	31.82	45.11	41.94	71.49	51.58	69.56	41.66	41.92	49.49	71.06	68.06	69.58
	Bulyan (ICML'18)	31.84	40.38	35.86	49.39	41.96	67.51	33.12	38.35	36.47	48.15	50.89	64.89
CIFAR10	DnC (NDSS'21)	72.73	71.55	64.94	72.65	47.28	70.88	72.22	72.85	70.76	71.96	72.08	70.84
(IID)	FLTrust (NDSS'21)	71.00	56.98	65.02	70.80	67.45	71.47	70.27	53.04	71.29	70.54	71.06	68.99
	SignGuard (ICDCS'22)	66.72	72.52	68.63	69.66	70.21	69.70	60.88	72.71	68.71	72.38	70.86	70.68
	FLGuard (Ours)	73.44	72.71	73.86	73.60	72.48	72.02	73.19	72.99	73.15	73.44	73.30	72.36
	TrMean (ICML'18)	56.78	76.10	62.52	63.69	49.44	80.06	73.98	76.73	74.28	75.68	78.84	81.11
	MKrum (NIPS'17)	5.05	78.60	5.02	83.71	4.87	81.00	5.67	78.13	4.85	83.74	8.81	81.34
	Bulyan (ICML'18)	53.41	72.77	53.13	66.74	53.47	75.95	48.89	74.98	53.53	67.20	56.50	79.63
FEMNIST	DnC (NDSS'21)	6.97	82.76	4.85	84.03	4.87	80.71	5.26	81.06	4.98	83.63	26.79	80.65
(Non-IID)	FLTrust (NDSS'21)	4.60	83.30	35.79	4.58	52.83	80.07	4.68	83.61	36.88	4.46	5.09	79.98
	SignGuard (ICDCS'22)	80.37	84.19	10.12	83.58	8.87	82.15	8.75	83.96	8.77	83.40	77.64	81.73
	FLGuard (Ours)	84.14	83.80	84.30	84.19	83.22	81.86	83.12	84.02	82.11	83.94	81.51	83.44

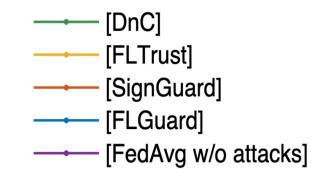
Experiments – Robustness

Dataset		Type-3							Type-4						
(Distr.)	AGR	LIE		Min-Max		Min-Sum		LIE		Min-Max		Min-Sum		SF	
		uv	sgn	uv	sgn	uv	sgn	uv	sgn	uv	sgn	uv	sgn	SF	
	TrMean (ICML'18)	72.65	71.61	57.65	60.65	69.36	69.07	73.42	75.28	64.85	59.33	68.34	64.67	57.73	
	MKrum (NIPS'17)	71.31	71.55	65.32	44.18	65.69	56.39	70.64	70.35	59.21	43.32	64.02	46.61	62.62	
	Bulyan (ICML'18)	73.42	53.86	38.80	37.58	45.21	41.07	64.96	54.44	39.31	38.70	40.28	42.67	48.54	
CIFAR10	DnC (NDSS'21)	72.24	71.23	71.61	71.29	70.94	55.05	72.24	73.09	71.83	71.57	71.49	60.13	73.54	
(IID)	FLTrust (NDSS'21)	72.24	68.22	71.29	70.54	72.24	57.57	71.00	66.11	70.27	71.45	70.45	57.35	69.83	
	SignGuard (ICDCS'22)	72.50	70.68	60.11	69.99	70.05	69.87	72.81	71.96	58.85	68.43	69.95	68.51	53.06	
	FLGuard (Ours)	73.60	73.13	72.95	73.50	72.38	72.50	74.25	72.85	72.87	72.97	72.06	72.87	72.06	
	TrMean (ICML'18)	83.12	83.95	72.09	57.64	81.26	64.11	82.21	83.17	73.62	71.05	80.49	72.24	79.73	
	MKrum (NIPS'17)	83.86	72.30	80.18	4.85	82.90	9.33	83.68	83.80	78.13	4.87	82.79	11.25	78.23	
	Bulyan (ICML'18)	82.60	71.41	58.29	61.21	72.34	34.50	80.86	72.28	57.43	60.39	73.09	45.37	68.70	
FEMNIST	DnC (NDSS'21)	83.93	83.59	83.34	44.11	83.36	5.69	83.84	83.63	80.93	5.25	83.51	5.42	81.44	
(Non-IID)	FLTrust (NDSS'21)	84.92	81.97	4.64	59.68	76.16	58.83	83.66	4.85	6.64	6.17	5.63	6.40	14.27	
	SignGuard (ICDCS'22)	83.90	83.56	80.09	8.73	83.58	76.80	83.79	83.74	80.10	8.13	83.27	10.80	78.43	
	FLGuard (Ours)	84.32	84.04	84.07	84.39	84.19	82.62	83.90	82.41	83.47	82.63	84.08	83.53	83.79	

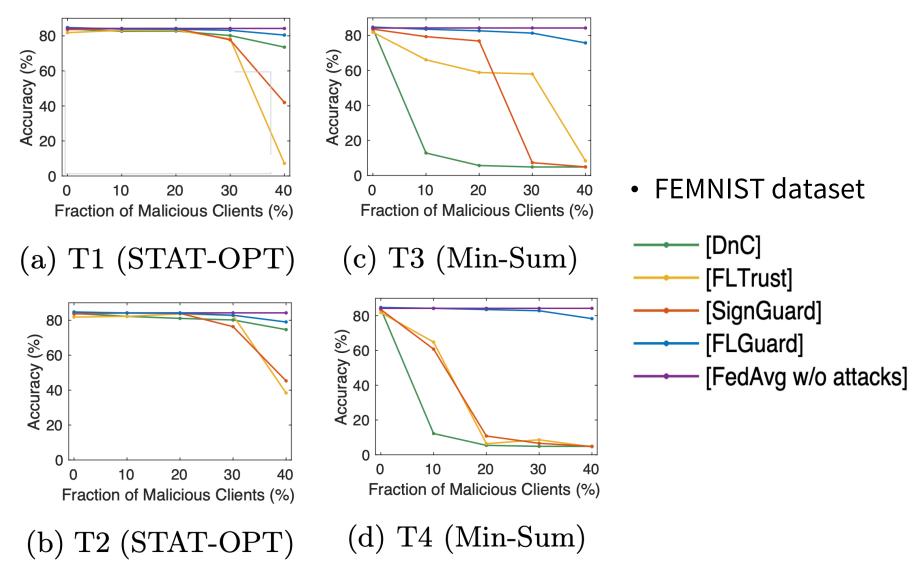
Experiments – Efficiency



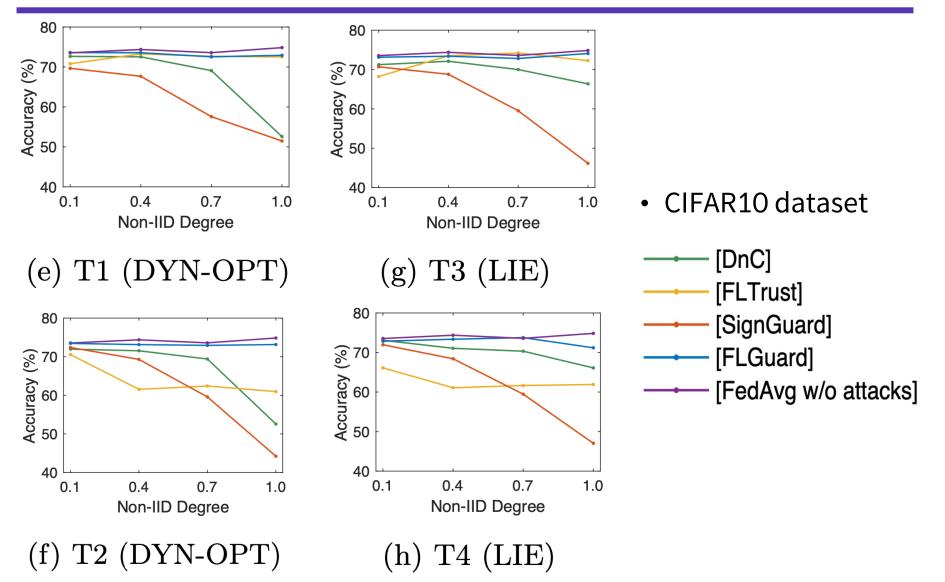
- No extra FL rounds
- 22.1s to train contrastive models
- 78ms for filtering



Experiments – Malicious Client %



Experiments – Non-IID Degree



Conclusion

- Byzantine-robust FL by employing contrastive learning
- FLGuard operates without prior knowledge regarding FL
 - No information about the number of malicious client (statistical info)
 - No auxiliary dataset
- FLGuard is robust in **both IID and non-IID dataset settings**
 - No catastrophic failure in non-IID dataset settings
- FLGuard is robust under an extreme adversarial settings
 - High percentage of malicious client present
 - Extremely non-IID settings

Thank you for your attention !

Q&A?

