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Updates the global model
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FL – How it works



• Malicious clients  attempts to degrade the performance of  AI model 
• Model poisoning attack & Data poisoning attack

• Threat to integrity and availability of AI model
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FL – Poisoning attacks



• Adversaries’ objective is indiscriminate 
• aims to misclassify any data samples

• Type-1 represents the strongest adversaries
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FL – Poisoning attacks



• Preserve the performance of AI model

• Fidelity – Not sacrifice accuracy when no adversaries are present

• Robustness –Persist the accuracy when adversaries are present

• Efficiency – Not cause an overhead that will delay the training 

• Current Limitation
• Requires additional information about FL 

• Number of malicious clients present in FL (statistical info)

• Auxiliary dataset

• Not effective under non-IID settings
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Byzantine-robust FL



Updates the global model
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Our Method - Overview
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Our Method – In details



• Two different dimension reduction techniques
• Different attacks requires different techniques to defend

• MaxAbs scaler to keep the sign of original local updates
• Improves the accuracy by 20% compared to MinMax scaler
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Our Method – Preprocessing
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Our Method – Contrastive Learning

• Gaussian noise

• 𝑙!𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
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Our Method – Filtering

• Projects the local updates to representation: ℎ!" and ℎ#$
• PCA to reduce the dimension down for clustering

• Agglomerative hierarchical clustering to form two clusters

• We consider bigger cluster as the benign and ensemble: 𝐶!" ∩ 𝐶#$
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Experiments – Setup



• Goal is to create malicious local updates

• 𝑔! = 𝑔" + 𝛾𝑝, 𝑤ℎ𝑒𝑟𝑒 𝑝 = 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟

• 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑢𝑛𝑖𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 = − 7#!
#! "

, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑠𝑖𝑔𝑛 = − sgn(𝑓$%# (𝑔"))

• Finding an optimal 𝛾 is the main challenge

• Threat model Type 1 & 2 
• Static optimization approach (USENIX Security 20)
• Dynamic optimization approach (NDSS 21)

• Threat model Type 3 & 4
• Little Is Enough (NIPS 19)
• Min-Sum and Min-Max (NDSS 21)
• Sign Flip (NIPS 19)

• Threat model Type 5
• Static Label Flip (NDSS 21)
• Dynamic Label Flip (S&P 22)
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Experiments – Poisoning attacks
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Experiments – Fidelity

• FedAvg without attacks (baseline) 

• MNIST-0.1 : 97.24%,  CIFAR-10 : 73.54%, MNIST-0.5 : 97.16%, FEMNIST : 84.11% 
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Experiments – Robustness
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Experiments – Robustness
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Experiments – Efficiency

• No extra FL rounds

• 22.1s to train 
contrastive models

• 78ms for filtering
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Experiments –Malicious Client %

x

• FEMNIST dataset
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Experiments – Non-IID Degree

• CIFAR10 dataset



• Byzantine-robust FL by employing contrastive learning

• FLGuard operates without prior knowledge regarding FL

• No information about the number of malicious client (statistical info)

• No auxiliary dataset

• FLGuard is robust in both IID and non-IID dataset settings

• No catastrophic failure in non-IID dataset settings

• FLGuard is robust under an extreme adversarial settings

• High percentage of malicious client present

• Extremely non-IID settings
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Conclusion



Thank you for your attention !

Q&A ?
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