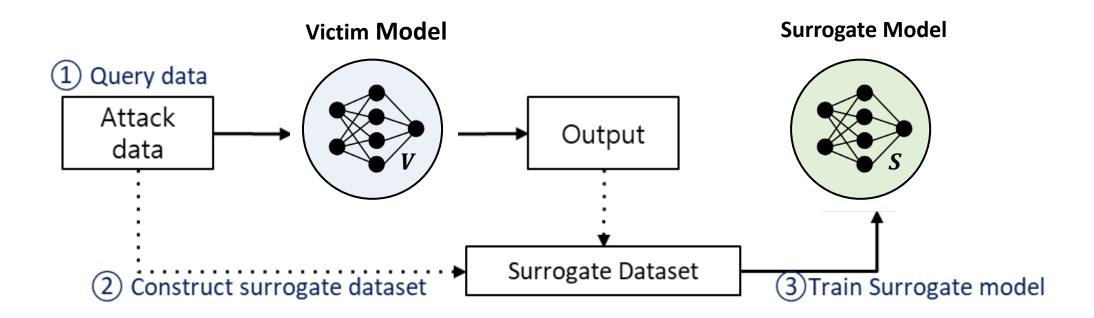
Precise Extraction of Deep Learning Models via Side-Channel Attacks on Edge/Endpoint Devices

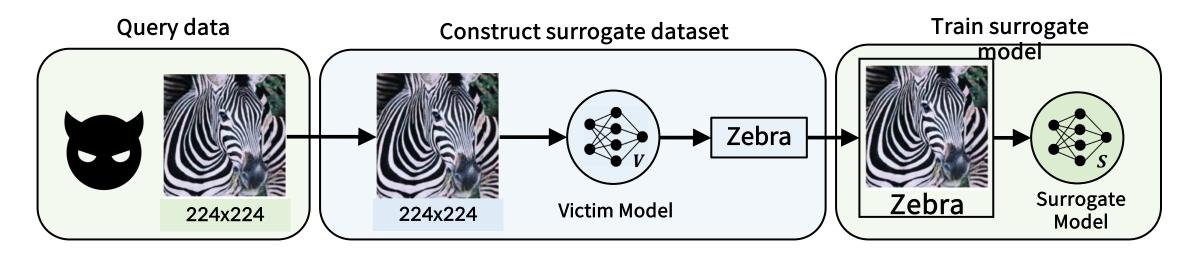
Younghan Lee¹, Sohee Jun¹, Yungi Cho¹, Woorim Han¹, Hyungon Moon² and Yunheung Paek¹

¹Seoul National University (SNU), ²Ulsan National Institute of Science & Technology (UNIST)


Table of Contents

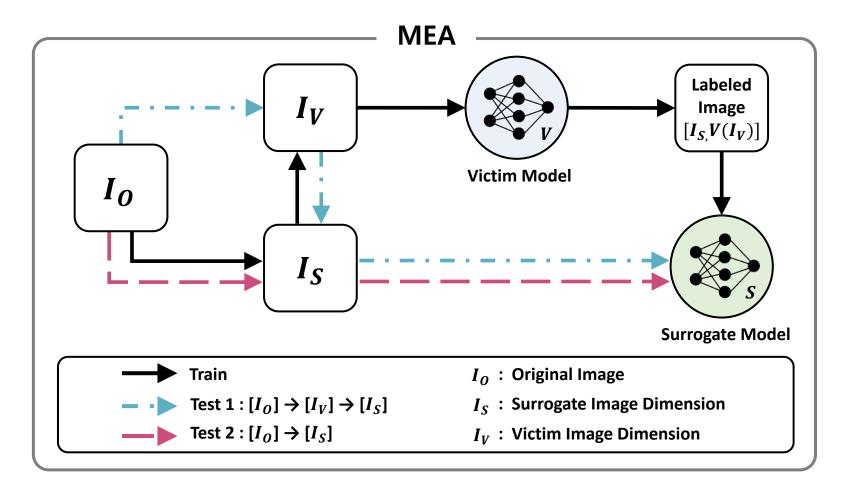
- Model Extraction Attack
 - How it works
 - Our insight
- Analysis on Effects of Model Information
 - Various analysis settings
- Experiments
 - Model extraction via side-channel attack
- Conclusion

Model Extraction Attack


• How it works

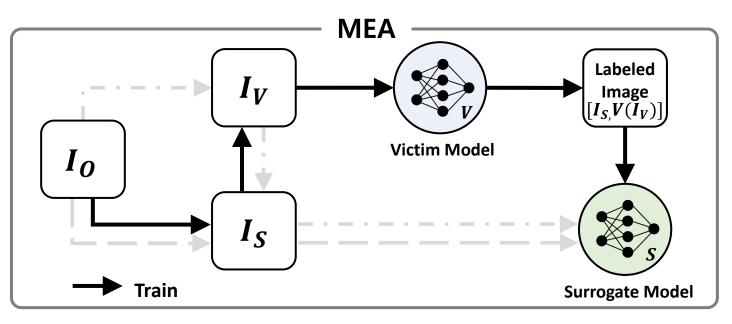
Our Insight

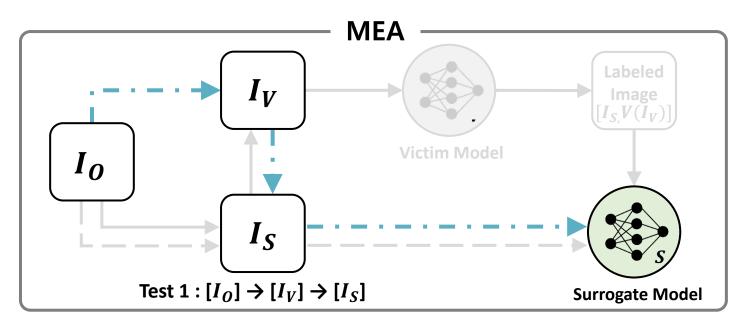

- Current MEA operates with the same model information
 - e.g.,) image dimension (ID)



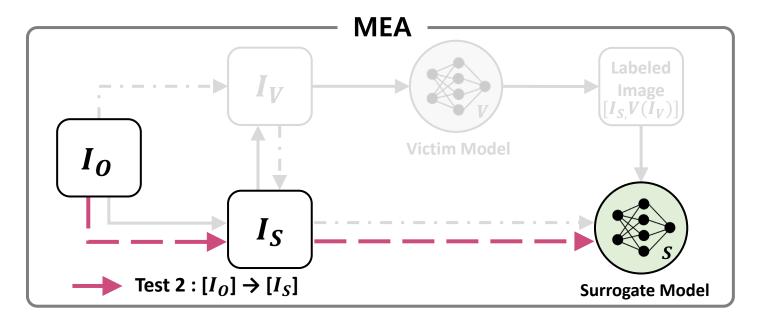
Our Insight

- When the adversaries **Do Not** have such information
 - e.g.,) image dimension (ID)





- Construct surrogate dataset with surrogate model's ID
 - Re-labeled Image $[I_s, V(I_V)]$
- Train the surrogate with re-labeled images



- Evaluate the surrogate by converting the dimension
 - First, to victim model's image dimension
 - Then, to surrogate model's image dimension

- Evaluate the surrogate by converting the dimension
 - Directly to surrogate model's image dimension

Various Analysis Settings

• Datasets

	Dataset	Classes	Train Samples	Test Samples	Original Image (I_O)	Analysis
	Indoor[18]	67	14,280	1,340	224x224x3	ID& MA
Victim	Caltech-256[6]	256	$23,\!380$	$6,\!400$	224x224x3	ID& MA
	CUB-200[23]	200	$5,\!994$	$5,\!794$	224x224x3	ID
	CIFAR-100[9]	100	50,000	10,000	32x32x3	MA
Attack	ImageNet[20]	1,000	$1.2\mathrm{M}$	150,000	224x224x3	ID& MA
Attack	ImageNet[20] OpenImages[10]	600	$1.74\mathrm{M}$	$125,\!436$	224x224x3	ID

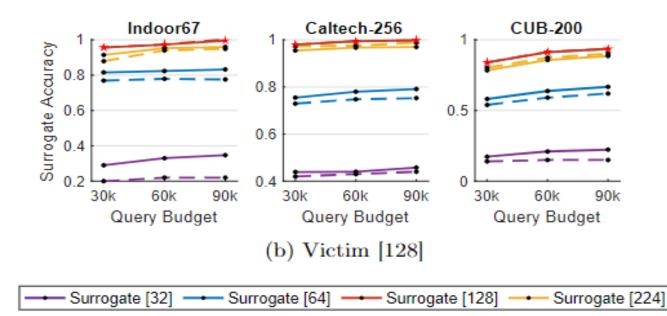
 Table 1: Dataset Configuration

Various Analysis Settings

- Attack Query Budget
 - 30k, 60k, 90k
 - Higher the budget, stronger the attack
- Attack Strategy
 - Randomly select the query dataset (KnockoffNets, CVPR '19)
 - Adaptively select the query dataset (ActiveThief, AAAI '20)
- Model Architecture
 - WideResNet-28-k
 - Higher the value of k, more complex the architecture

- Various datasets
- Same ID achieves the best relative accuracy

V	ictim Model	Surrogate Model									
Dataset	Accuracy	Model	Attack Query	RN5 Test 1	11	RN5 Test 1	11		0 _[128] Test 2	RN5 Test 1	<u> </u>
Indoor67	64.78% (1x)		ImageNet OpenImages	0.88x 0.91x						0.43x 0.46x	
Caltech-256	66.56% (1x)	RN50[32]	ImageNet OpenImages	0.96x 0.94x						0.59x 0.47x	
CUB-200	67.02% (1x)		ImageNet OpenImages							0.35x 0.31x	
Indoor67	72.99% (1x)		ImageNet OpenImages							0.69x 0.71x	
Caltech-256	76.81% (1x)	RN50[64]	ImageNet OpenImages							0.85x 0.78x	
CUB-200	77.89% (1x)		ImageNet OpenImages							0.58x 0.55x	



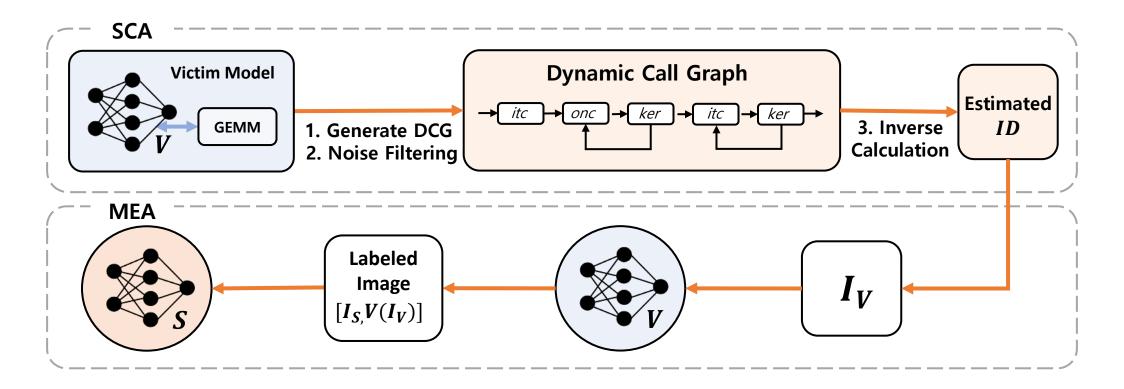
- Various datasets
- Same ID achieves the best relative accuracy

V	ictim Model	Surrogate Model									
Dataset	Accuracy	Model	Attack Query	RN5 Test 1	<u> </u>	RN5 Test 1	[~~]	RN5 Test 1			0 _[224] Test 2
Indoor67	67.24% (1x)		ImageNet OpenImages		0.22x 0.22x			0.97x 1.00x			
Caltech-256	76.75% (1x)	RN50 _[128]	ImageNet OpenImages		0.43x 0.42x			0.99x 0.97x			
CUB-200	77.44% (1x)		ImageNet OpenImages		0.15x 0.13x			0.91x 0.88x			
Indoor67	73.51% (1x)		ImageNet OpenImages		0.25x 0.23x			0.90x 0.92x			
Caltech-256	78.11% (1x)	$RN50_{[224]}$	ImageNet OpenImages		0.39x 0.38x			0.95x 0.92x			
CUB-200	78.17% (1x)		ImageNet OpenImages		0.16x 0.14x			0.78x 0.74x			

- Various query budgets
- Solid line = Test 1, Dotted = Test 2, Starred = Same ID
- Same ID achieves the best relative accuracy

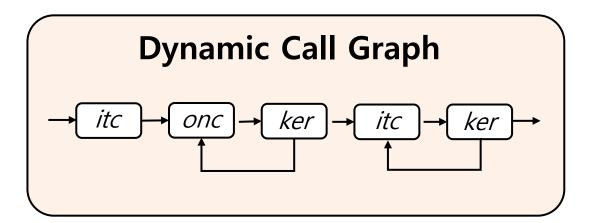
- Different attack strategy (ActiveThief)
- Same ID achieves the best relative accuracy

Victim Model			Surrogate Model							
Dataset	Accuracy	Model	RN50[32]		$RN50_{[64]}$		$RN50_{[128]}$		$RN50_{[224]}$	
			Test 1	Test 2	Test 1	Test 2	Test 1	Test 2	Test 1	$\frac{\text{Test } 2}{\text{Test } 2}$
	64.78% (1x)									
Indoor67	72.99% (1x) 67.24% (1x)	$RN50_{[64]}$	0.31x	0.27 x	0.90 x	0.90 x	0.70x	0.86x	0.65 x	$0.50 \mathrm{x}$
	67.24% (1x)	$RN50_{[128]}$	0.28x	$0.21 \mathrm{x}$	0.78x	0.75x	0.95x	0.95 x	0.90x	$0.91 \mathrm{x}$
	73.51% (1x)	$RN50_{[224]}$	0.17x	0.23x	0.60x	0.65 x	$0.85 \mathrm{x}$	0.84x	0.88 x	0.88 x


- Various model complexity
- Model with higher complexity achieves the best relative accuracy

	Victim Mod	lel	Surrogate Model					
Dataset	Accuracy	Model	$WRN28\text{-}1_{[32]}$	$WRN28-5_{[32]}$	$WRN28-10_{[32]}$			
	68.36% (1x)	WRN28-1 _[32]	0.43x	0.56x	0.57x			
CIFAR-100	77.95% (1x)	$WRN28-5_{[32]}$	0.26x	0.36x	0.39x			
	79.44% (1x)	$WRN28-10_{[32]}$	0.26x	0.37x	0.39 x			

Experiments


Model extraction via side-channel attack

Experiments

- 1. Generate DCG
 - Using *Flush+Reload,* monitor the addresses of the key functions
 - Count the number of each loop
 - Loop $1 \rightarrow itcopy oncopy kernel itcopy kernel$
 - Loop 2 \rightarrow itcopy kernel
 - Loop $3 \rightarrow oncopy$ kernel

Experiments

- 2. Noise Filtering Mechanism
 - Filter out the function calls observed shortly after the previous one
 - < 10 intervals
 - Filter out any function calls within the threshold
 - Use the average interval between the function calls as a threshold
- 3. Estimate Image Dimension through Inverse Calculation
 - Use properties obtained from DCG to calculate ID inversely
 - Details in the paper

Experimental Results

• 1. Image Dimension Estimation

	$\mid m \mid$						kernel			
Victim Model	SCA	Target	SCA	Target	SCA	Target	SCA	Target	SCA	Target
$RN50_{[128]}$	4118.5	4096	72	64	35.7	27	3.5	3	129.3	128

Experimental Results

• 2. Subsequent Model Extraction

Victim Model			Surrogate Model						
Dataset	Accuracy	Model	$ RN50_{[32]} $	$ RN50_{[64]} $	$ RN50_{[128]} $	$ RN50_{[129]} $	$ RN50_{[224]} $		
Indoor67	67.24% (1x)		0.22x	0.78x	0.97x	0.99x	0.94x		
Caltech-256	76.75% (1x)	$ RN50_{[128]} $	0.43x	0.75x	0.99x	0.96x	0.97x		
CUB-200	77.44% (1x)		0.15x	0.59x	0.91x	0.87x	0.87x		

Conclusion

- Model information is the key to achieving high MEA performance
- Image dimension is the crucial piece of model information
- Model information of the victim can be **extracted via SCA**
- We provide an insight that MEA can be thwarted effectively by

obfuscating the image dimension values of the model

